Validating the PVL-Delta model for the Iowa gambling task
نویسندگان
چکیده
Decision-making deficits in clinical populations are often assessed with the Iowa gambling task (IGT). Performance on this task is driven by latent psychological processes, the assessment of which requires an analysis using cognitive models. Two popular examples of such models are the Expectancy Valence (EV) and Prospect Valence Learning (PVL) models. These models have recently been subjected to sophisticated procedures of model checking, spawning a hybrid version of the EV and PVL models-the PVL-Delta model. In order to test the validity of the PVL-Delta model we present a parameter space partitioning (PSP) study and a test of selective influence. The PSP study allows one to assess the choice patterns that the PVL-Delta model generates across its entire parameter space. The PSP study revealed that the model accounts for empirical choice patterns featuring a preference for the good decks or the decks with infrequent losses; however, the model fails to account for empirical choice patterns featuring a preference for the bad decks. The test of selective influence investigates the effectiveness of experimental manipulations designed to target only a single model parameter. This test showed that the manipulations were successful for all but one parameter. To conclude, despite a few shortcomings, the PVL-Delta model seems to be a better IGT model than the popular EV and PVL models.
منابع مشابه
Computational modeling of dynamic decision making using connectionist networks
In this research connectionist modeling of decision making has been presented. Important areas for decision making in the brain are thalamus, prefrontal cortex and Amygdala. Connectionist modeling with 3 parts representative for these 3 areas is made based the result of Iowa Gambling Task. In many researches Iowa Gambling Task is used to study emotional decision making. In these kind of decisio...
متن کاملA Comparison of Reinforcement Learning Models for the Iowa Gambling Task Using Parameter Space Partitioning
The Iowa gambling task (IGT) is one of the most popular tasks used to study decisionmaking deficits in clinical populations. In order to decompose performance on the IGT in its constituent psychological processes, several cognitive models have been proposed (e.g., the Expectancy Valence (EV) and Prospect Valence Learning (PVL) models). Here we present a comparison of three models—the EV and PVL...
متن کاملAn improved cognitive model of the Iowa and Soochow Gambling Tasks with regard to model fitting performance and tests of parameter consistency
The Iowa Gambling Task (IGT) and the Soochow Gambling Task (SGT) are two experience-based risky decision-making tasks for examining decision-making deficits in clinical populations. Several cognitive models, including the expectancy-valence learning (EVL) model and the prospect valence learning (PVL) model, have been developed to disentangle the motivational, cognitive, and response processes u...
متن کاملHeterogeneity of strategy use in the Iowa gambling task: a comparison of win-stay/lose-shift and reinforcement learning models.
The Iowa gambling task (IGT) has been used in numerous studies, often to examine decision-making performance in different clinical populations. Reinforcement learning (RL) models such as the expectancy valence (EV) model have often been used to characterize choice behavior in this work, and accordingly, parameter differences from these models have been used to examine differences in decision-ma...
متن کاملCognitive Mechanisms Underlying Risky Decision-Making in Chronic Cannabis Users.
Chronic cannabis users are known to be impaired on a test of decision-making, the Iowa Gambling Task (IGT). Computational models of the psychological processes underlying this impairment have the potential to provide a rich description of the psychological characteristics of poor performers within particular clinical groups. We used two computational models of IGT performance, the Expectancy-Va...
متن کامل